JOURNAL OF CHROMATOGRAPHY

CHROMATOGRAPHIC ANALYSIS OF PHOTOSENSITIZING DYES

JUDITH S. BELLIN^{*} AND MICHAEL E. RONAYNE Department of Chemistry, Polytechnic Institute of Brooklyn, Brooklyn, N.Y. (U.S.A.) (Received January 31st, 1966)

The studies reported here were undertaken with the initial objective of establishing the purity of several dyes which had been used in our investigations concerning their photochemical properties. Questions as to the purity of several dyes arose because in several instances our inability to demonstrate the photosensitizing properties of a dye was thought to be due to the presence of sensitizing impurities in dye samples used by other workers. In addition the determination of the spectroscopic properties of dyes, a field of investigation greatly stimulated by the development of laser systems, necessitates the use of pure dyestuffs.

There are several reviews¹⁻³ dealing with methods of dye purification in general, and with the chromatographic assay of dye purity in particular. For paper chromatography of thiazine dyes an excellent system was developed by TAYLOR^{4, 5}. It quickly became apparent, however, that the solvent systems generally used are extremely slow, and did not always give good resolution. In developing the solvent system reported here, our aim was to achieve a system which would give good separation of constituents in relatively short time periods, and one which could be applied to a wide variety of dye systems.

EXPERIMENTAL

The dyes used in this investigation are listed in Table I. Thionolin was prepared and purified by a method in the literature⁶ and further purified by extraction of an acid solution with chloroform. Formamide (grade: "for vitamin assay"), *n*- and *tert*.butanol, and acetone were purchased from Fischer as certified reagent grades. Most of the dyes were dissolved in 10% of the final volume absolute ethyl alcohol, and diluted to final volume with water; the final concentrations of the dyes were 1-4 mg per ml solution; 0.01-0.20 mg of dye (0.01-0.10 ml of solution) were applied to paper using a hypodermic syringe under a stream of air to minimize spreading of the spot. Thionolin and methylene violet were dissolved in methanol.

Solvents for development

Three solvent systems were used as described below:

A. tert.-Butanol-acetone-0.2 M HCl (aq.) (35:35:30; parts by volume). The apparent pH of this mixture as measured with a glass electrode is 1.9.

^{*} This investigation was supported in part by Public Health Service Rescarch grant No. CA-08358-02 and by a Research Career Program Award (No. 5-K3CA-8861) from the National Cancer Institute.

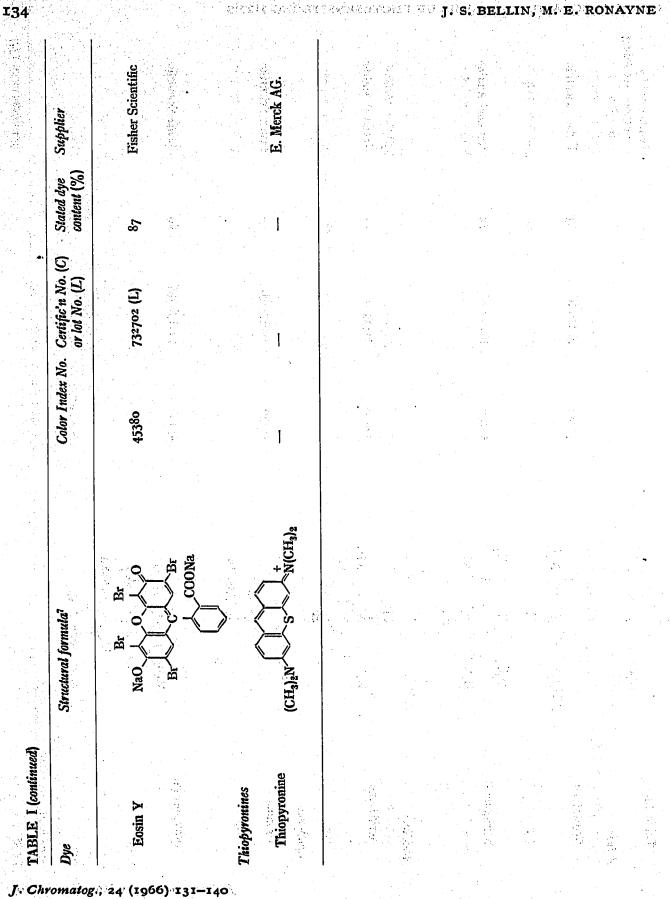
132				1. 19 ¹⁷		11 - A4	J. S. BE	CLLIN, M.	E. RONAYI	1E
	Supplier		National Aniline	National Aniline	National Aniline	National Aniline	Fisher Scieutific	National Aniline	National Aniline	National Aniline
	Stated dye content (%)		5 28	 ∴	.	69	88	. 19	na I ¹ an teorema	I
	Certific'n No. (C) or lot No. (L)		NT 20 (C)	NAc 5 (C)	NAz 16 (C)	NAb (C)	741220 (L)	NU 12 (C)	14642 (L)	1623 p (L)
	Color Index No.		2 300	a de la composition de la com	n (n. 1995) 1997 - Andreas 1997 - An	230F0	5 201 5	22040	22030	52020
IOGRAPHY	Structural formula ¹				(CH ₃) ₂ N S NH ₃		(CH ₃) ₂ N S N(CH ₃) ₂	(CH ₃) ₂ N S NH ₂ +	N $CH_3 \rightarrow CH_3 \rightarrow CH_3$ $C_2H_3N \rightarrow S \rightarrow NH$ H C_3H_5	(CH ₃) ₂ N S N(CH ₃) ₂
TABLE I dyes used for chromatography	Dye	Thiazines	Thionine	Azine C			Methylene blue	Toluidine blue O	New methylene blue N	Methylene green

J. Chromatog., 24 (1966) 131-140

CHROMATOGRAPHIC ANALYSIS OF PHOTOSENSITIZING DYES

٥

National Aniline	Synthesized by authors according to ref. 6	Fisher Scientific	National Aniline	National Aniline	Fisher Scientific	Fisher Scientific	(continued on p. 134)
70	1	33	85	• i •	1	80	
NLv 8 (C)		N 129 (C)	NS 22 (C)	14435 (L)	731575 (L)	724158 (L)	
I	I	50040	50240	46000	45350	45440	
(CH ₃) ₂ N S S S S S S S S S S S S S S S S S S S	0 N ² H ² H	(CH ₃) ₂ N (CH ₃) (CH ₃) ₂ N (CH ₃) H		H ₂ N H ₂ N H ₂	NaO C O O O O O O O O O O O O O O O O O O		
Methylene violet	Thionolin	izmes Neutral red	Safranine O	l <i>cridines</i> Acriflavine	K <i>anthenes</i> Uranine	Rose bengal	


Acridines Acriflavine

Azines

J. Chromalog., 24 (1966) 131-140

Kanthenes

I33

B. tert.-Butanol-acetone-0.2 M NH₃ (aq.)-0.2 M HCl (aq.) (35:35:21:9). The apparent pH of this mixture is pH 9.0. This pH was chosen because it was found to prevent "ghosting" of components in the case of the alkaline thiazine dyes.

C. tert.-Butanol-n-butanol-0.2 M NH₃ (aq.) (40:30:30), with an apparent pH of 10.6.

Chromatographic development was carried out on wedge-shaped strips⁷ of Whatman 3MM paper, 4 cm wide and 45 cm long, in a Chromatobox (Warner-Chilcott Laboratories). Chromatography was carried out in the dark, and the chambers were sealed with parafilm in order to minimize evaporation of the volatile solvent components.

In order to keep conditions constant, a standard developing time of eighteen hours was adopted for solvents A and B. With solvent C forty hours were necessary. At the end of these time periods the solvent front had reached to within two cm of the end of the paper.

RESULTS AND DISCUSSION

The results of the chromatographic analysis of thiazine dyes are listed in Table II. The value α is the absorbance at the absorption maximum in ml per mg of dye. If the different fractions in a dye sample do not differ greatly in molar extinction coefficient, the values of α can be taken as the relative molar proportions of the components of the mixture. Thus one can calculate that the methylene blue sample analyzed is contaminated with 2.3 % Azure A and 8.1 % Azure B. The reproducibility of the R_F values and of α are illustrated for the analysis obtained in the case of methylene blue, where the standard deviation of ten determinations is listed. For those fractions whose spectra showed a definite shoulder in the absorption maximum this wavelength is listed, together with the relative absorbance at this wavelength compared to that at the absorption maximum. These values frequently aid in the identification of the various fractions. It should be noted that the spectral data given were obtained by eluting the fractions into 50 % (v/v) aqueous formamide (in order to get quantitative elution) and that these spectra therefore differ from those obtained in acetate or in methanol: the shoulders in the absorption spectra are less pronounced. In the eighth column of the table are listed what we believe to be the identity of the various fractions obtained. These are based on absorption maxima, R_F values and the comparison of the spectra in acetate buffer or methanol with spectra reported in the literature.

Excellent separation of components was achieved both at alkaline and acid pH. None of the samples tested was pure, some containing as much as sixty per cent of contaminant. Our results are in overall agreement with those reported for thiazine dyes by TAYLOR^{4,5} who used circular chromatography, and developed chromatograms using solvents based on cyclohexanone. Using this author's solvents in a closed system such as ours produced poor results: his method depends on the continued evaporation of the volatile solvent from the edge of the strip. It is therefore unsuited to the identification of dye components by their R_F values; since the values so obtained are all relative to the fastest-moving component.

Our identification of the various fractions occurring in those commercial samples of thiazine dyes which we analyzed, in general coincide with those assigned by $TAYLOR^{4,5}$. Several other authors^{3,8-10} obtain slightly different proportions of

J. Chromatog., 24 (1966) 131-140

a da anti-arra da anti-arra da anti- 1960 - Antonio Antonio Antonio Antonio 1970 - Antonio Antonio Antonio Antonio		8		146.0	18.0	35.0	12.0	23.5	84.0	23-5 11.0		, I I	5.5 H	2.00	4.3) (15.8	203.0
o na secondary i o da constructione a secondario e se la secondaria da constructione da constructione da constr Esta esta travelaria da constructione da constructione da constructione da constructione da constructione da con	(o.Q	ODAmar ODAsh		0-56		••••	0.58			0.65				0.49				0.45
n an	Developing solvent B (pH 9.0)	Ash (mµL)		570	- 44 		619			617	4 H 12			620	: : : • ;	•		619
n na antar ann an 1979 an Anna an Anna Anna Anna Anna Anna Ann	ing solve	Amax (mµ)		602	600	028 646	662	616	632	043 660	n an Nation	• • ; •	620	047 664	620		647	663
n an	Develop	RF	decomp.	0.64	0.57	0.55 0.41	0.29	0.58	0.53	0.43 0.30	·*.	0.78	0.58	0.52 0.44	0.55		0.49	0.45
(1) A second se second second sec		Identif.		Thionine	Azure C	Azure A Azure B	Methylene blue		· · · · · · · · · · · · · · · · · · ·	Methylene blue	N-Me-thionolin	N,N-Di-Me-thionolin	Azure A	Azure B Methylene blue	Azure A		Azure B	Methylene blue
(1) A strand set in the set of		8	4	190	36.0	50.0 36.0	15.0	48.0	0.70	27.0 I4.0	0.8	1. 6	17-5	05.0 85.0	1.0 + 0.1	-1 -1 -1 -1	19.I ± 1.4	213.0 ± 4.2
en en ser an anti-anti-anti-anti-anti-anti-anti-anti-	H I.9)	ODAm ODAsh	0.87		•	•	0.60			0,61	0.75	0.65	:	0.45				0.50
en el en acorditar e a de la caracter nembre de la caracter parte en la secondada nembre de la característica de la característica de la característica	g solvent A (pH 1.9)	Àsħ (тер)	564	r 7	·: -		620			619	574	579		619	•			620
n an	ing solve	hmax (mp)	538	005	610	627 647	66I.	618		643 659	604	618		048 664	620	6	648	665
 March 1990 - March 1990 - Mar Hang 1990 - March 1990 - Ma	Develop	RF	0.55	0.50	0.47	0.33	0.21	0.45	0.40	0.31 0.23	0.64	0.59	0.45	0.31	, 17 0 + 17 0	10.0	0.35 ± 0.01	0.31 ± 0.01
n versionen ander einen sollten einen sollten einen sollten einen sollten einen sollten einen sollten einen so Aufzugen sollten einen sollt Aufzugen sollten einen sollt	Amou	(<i>Bm</i>)	0.10		10.0		5 5 7 - 1 1 1 - 1				0.10	• •			OI O			
		ana an an A An Ana an An An An An An												e da Nort	anlıd an			
	Dye	ofisi ta se Na ješka di Hatistik Hatistik		्रः सः १९३ सः १९३	Azure C	- 2430 44 144	 	2		•	AzureB				Afathulana hina	TECCHAN		

J. Chromalog., 24 (1966) 131–140

136

CHROMATOGRAPHIC ANALYSIS OF PHOTOSENSITIZING DYES

Methylene violet	0.10	0.90	596 606	431 221	0.00	4.0	Thionol N Me thionolin	.80	γIŶ	683	0 fir	0 201
		0.58 28	ong Gig	581 581	0/0 0.6I	0.101 0.101	N,N-Di-Me-thionolin Thionine	0.70	597 507	6	lon	
		0.38 0.38	(53 (53			3.0	Azure A	0.52	625			2.3
a sue	. ·	0.32 0.26	647 662	620	0.55	5-5 6-9	Azure B Methylene blue	0.44 0.33	646 663	,619	0.57	4:5 4:5
Thionolin	0.10	0.69	592	560	0.84	128.0	Thionolin	0.79	593	560	0.86	122.0
Toluidine blue O	0.02	0.45 0.43 0.36	616 632 638			13-5 47-0 54-5	111	0.57 0.53 0.48	617 632 638		•	8.2 41.5 42.0
New methylene blue N 0.02	0.02	0.63 0.60	639 633			I5.0 92.0		0.82 0.80 0.69	639 635 633			4-5 12-5 63.0
Methylene green	0.10	0.57 0.5 4 0.33 0.30	644 656 649 664	623 617	0.81 0.45	2.9 79.0 5.7 41.8		decomp. decomp. 0.44 0.38	648 663	619	0.48	4.9 33-3

J. Chromatog., 24 (1966) 131-140

.

Amount (ng)	Development Solvent Time (h)	s (h) R _F	Amax (mµ)	8	Fluorescence of band	Development Solvent T	ime (h)	R	Amax (mµ)	8
Rose bengal 0.20	2 2	0.84 0.64 0.45	555 532 526 518	65-0 4-9 0.4	strong red slight red yellow very slight blue	U	Q	0.59 0.48 0.41 0.33	555 532 517 517	67.0 6.1 2.3 2.4 0.1
Uranine 0.20					slight pink green pink	J	Q.	0.52 0.38 0.24	505 500 500	0.3 143.5 0.5
Eosin Y 0.20					yellow yellow-green	IJ	40	0.51 0.44	524 517	106.0
Acriflavine 0.10	9	0.59 0.56 0.47	+ 5 50 + 550 + 550 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 500 + 50	60.0 60.0 68.0	pink orange-yellow yellow green-yellow reddish	۵. ۵.	81	0.75 0.66 0.56	460 450 	 < 0.1 7.6 61.0 65.0
T		0.47	526	9. 0. 8	red dark red	e e Marsula da Santa Angla da Santa da S	9	o.702	5 40	
Safranine 0.10 Thiopyronine 0.04	A	0.85 0.78 0.382	525 528 566	17.3 81.0 198.0	red orange-red	B		sample	sample decomposed	
			ntan Tanan Tanan Tanan Tanan							

J. Chromalog.; 24 (1966) 131-140

TABLE III

contaminant, and, in some cases incorrectly designate the fast (pink) component in thionine as thionolin⁸. This unknown component is a weak base which can readily be extracted into chloroform from an aqueous solution at pH 9. The absorption spectra of the major component in the sample labelled "Azure A" in formamide, or in pH 5 acetate buffer do not resemble those of Azure A (absorption max. in formamide at 627-629 m μ).

By the use of the alkaline solvent ("solvent B") one obtains lower values for total absorbance (α) than in the acid system A. This is probably due to decomposition of several of the thiazine components at this pH. The more acid solvent is therefore to be preferred for the chromatographic separation of thiazines. Thionol, the fastest-moving component in methylene violet (solvent A) is resolved better in solvent system B.

The necessity for using pure samples in evaluating the photochemical reactivity of a dye is well illustrated by our observations on methylene green. On chromatography this dye sample was shown to contain at least forty per cent of contaminants, of which methylene blue is by far the major constituent. The ability of these fractions to sensitize the photopolymerization of calcium acrylate¹¹ is vastly different: when the components were used at equal absorptivity, whereas the methylene blue fraction caused polymer formation within seconds, the methylene green fraction caused only slight polymerization after six minutes. The decreased reactivity of the methylene green as compared with methylene blue can be ascribed to the presence of a nitro group¹². Methylene green has been reported to be a good sensitizer for the photodynamic inactivation of viruses¹³. On the basis of our findings we would suspect that the dye sample used by this author was heavily contaminated with methylene blue, which was probably responsible for the photodynamic effect.

Table III gives results obtained for the chromatographic analysis of various photosensitizing dyes other than thiazines. Good separation was achieved with neutral red at acid pH, and for the acridine dye, acriflavine, at both acid and alkaline pH. Safranine O gave very poor separation in solvent system A. Increasing the polarity and the acidity of the resolving solvent may somewhat improve the resolution obtained. In the case of xanthene dyes, the alkaline butanol-acetone solvent (solvent B) gave poor resolution of the secondary bands, which were quite broad, although these were well-differentiated from the main component. Replacement of acetone with *n*-butanol and increasing the apparent pH of the mixture resulted in better separation of the contaminants, but the time needed to achieve resolution is twice as long. Our results agree with those obtained by others¹⁴⁻¹⁶ using different solvent systems, in that eosin Y, for instance, produced two zones; the minor component is probably 2,4,5-tribromofluorescin¹⁵. Since the authors cited do not quote R_F values, it is difficult to decide whether the separations achieved are comparable.

None of the solvent systems used could usefully be applied to the analysis of triphenylmethane dyes: the polarity of the solvents is such that these dyes move with the solvent front. Reverse-phase chromatography, although it is a cumbersome technique seems best suited for the analysis of these dyes¹⁷.

SUMMARY

Simple one-phase solvent systems were developed which are useful for the

and the second second

J. Chromalog., 24 (1966) 131-140

chromatography of a variety of water-soluble acid and alkaline dyes. Using these solvents the purity of several commercial preparations of thiazine, azine, acridine, and xanthene dyes was assayed, and it was shown that such preparations can contain up to sixty percent of isomeric contaminants. These findings point to the need for purifying dye samples before their use in determining absolute quantum yields of photoreduction or photoxidation; spectral changes in absorption due to dye-binding, and spectroscopic properties.

REFERENCES

- I J. F. CHRISTMAN AND R. H. TRUBY, Stain Technol., 27 (1952) 53.
- 2 C. H. GILES AND J. J. GRECZEK, Textile Res. J., 32 (1962) 506.
- 3 J. P. PERSYN, Stain Technol., 36 (1961) 27.
- 4 K. B. TAYLOR, J. Histochem. Cytochem., 8 (1960) 248.
- 5 K. B. TAYLOR, Stain Technol., 36 (1961) 73.
- 6 S. GRANICK, L. MICHAELIS AND M. P. SCHUBERT, J. Am. Chem. Soc., 62 (1940) 1802.
- 7 H. J. CONN, Biological Stains, 7th Ed., William and Wilkins, Baltimore, Md., 1961.
- 8 C. NERENBERG AND R. FISCHER, Stain Technol., 38 (1963) 75.
- 9 J. BALL AND D. S. JACKSON, Stain Technol., 28 (1953) 33. 10 H. KRAMER AND G. WINDRUM, J. Histochem. Cytochem., 3 (1955) 227.
- 11 G. OSTER, Nature, 173 (1954) 300.
- 12 J. S. BELLIN, Photochem. Photobiol., 4 (1965) 33.
- 13 N. УЛМЛМОТО, J. Bacteriol., 75 (1958) 443. 14 A. J. EMERY AND E. STOTZ, Stain Technol., 27 (1952) 21.
- 15 I. HANIG AND L. KOCH, J. Assoc. Offic. Agr. Chemists, 46 (1963) 1010.
- 16 L. KOCH, J. Assoc. Offic. Agr. Chemists, 48 (1965) 833.
- 17 J. CIGLAR, J. KOLSEK AND M. PERPAR, Chemiker Zig., 86 (1962) 41.

J. Chromatog., 24 (1966) 131-140